	Chemical reaction engineering (1)
	Chapter 16 : Residence time distributions
	of chemical reactors.
	General considerations
	Models developed so for are for
	perfectly mixed batch reactor,
	the plug flow tubular reactor,
-	packed bed reactor, and
_(perfectly mixed continuous tank
	reactor
	Real world behavior is often
100	Very different from the ideal behavior
	Cendulor
	=> Use residence time distribution to
	analyze and characterize non-
	ideal reactors.
_()	(
	adiagnose problems of reactor
	operations
	predict conversion in existing
	reactor when new chemical reaction
	is used in the reactor.
\bigcirc	Natao an
	Notes on Elements of chemical reaction
0	Elements of chemical reaction engineering, H. Scott Fogler
	- Ranjeet Utikar

2 Examples of non-ideality packed bed CSTR bypass 28200000 path is not straight - nonuniform flow - Describing deviation from ideal reactor mixing pattern -> Residence time distribution (RTD) > quality of mixing > model used to describe the system Residence time distribution (RTD) function - popularized by prof. P.V. Dankwerts. Residence time : The time atoms have spent in the reactors. plug flow reactor ? atoms spend exactly ideal batch reactor I same time in these two reactors.

CSTR: Feed introduced into a CSTR becomes completely mixed with the material already in the reactor. ⇒ some atoms entering the csTR leave almost immidiately. ⇒ other atoms remain in the reactor almost forever as all the material recirculates within the reactor and is virtually never removed from the reactor at one time.

3

⇒ Distribution of residence times can Significantly affect reactor performance

• The RTD is a characteristic of the mixing that occurs in the chemical reactor.

• RTD yields distinctive clues to the type of mixing occuring within it and is one of the most informative characteristic of the reactor

Measurement of RTD - determined experimentally -> Injecting tracer' into the reactor at some time t=0 and then measuring the tracer conc. c in the effluent stream as a function of time. Properties of tracer - Inert .. non-reactive - easily detectable - similar physical properties to the reacting mixture - completely soluble in reacting mixture - does not adsorb on reactor walls - Tracer behavior should mimic the behavior of material flowing in the reactor. Common tracers : colored dye, radioactive material, inert gases

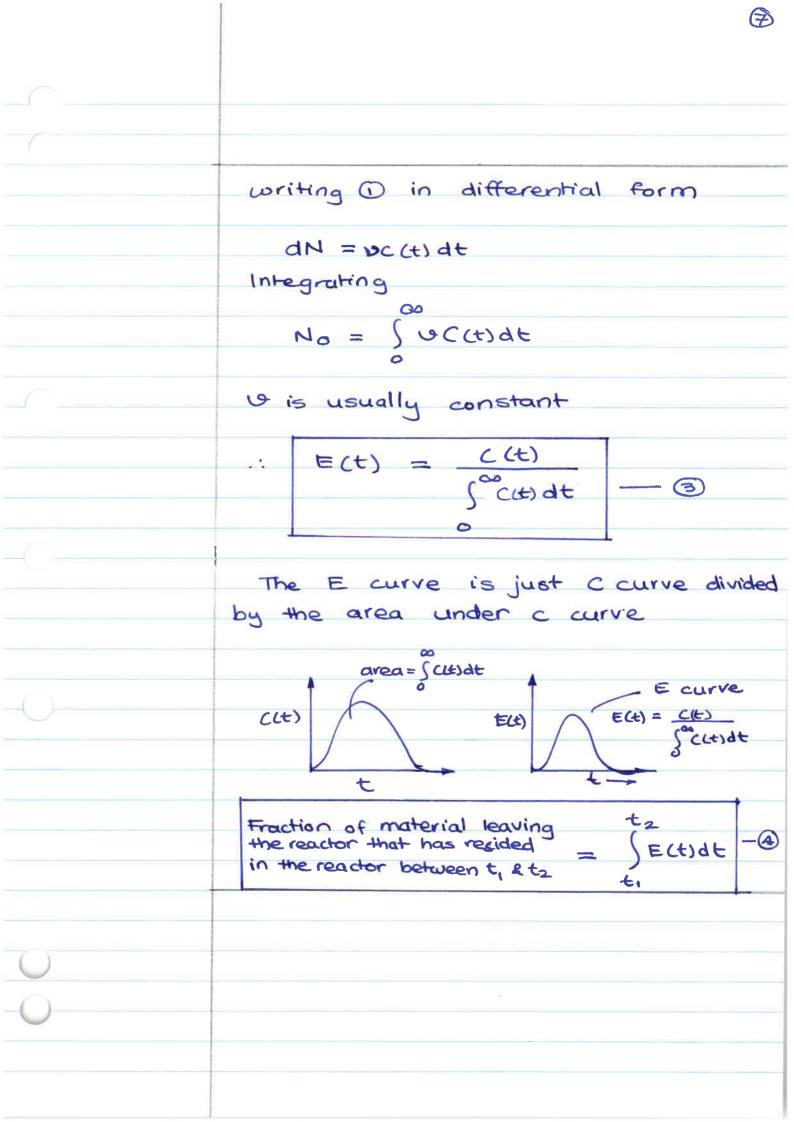
(4)

Pulse input experiment · An amt of C-curve tracer No ⇒ C is suddenly injected in one shot pulse injection pulse response into the feed stream - outlet conc. is measured with time. · Lets consider single - input and single output system · only How carries the tracer material No dispersion . Increment of time at is sufficiently small that conc of tracer ((t) exiting between t and t+st is essentially same Amount of tracer material leaving the reactor between t and (t+st) AN = ((t) U At U: vol. flow rate

(5)

dividing by the total amount of material that was injected fraction of material that has residence time in the reactor

6


 $\frac{\Delta N}{No} = \frac{OC(t)}{No} \Delta t$ bet? t and t+st

For pulse injection Let

E(t) = O(t)	Residence time
64	function
$\frac{\Delta N}{N_0} = E(t) \Delta t - 0$	Function that
20	describes in quantita-
Feed Effluent	tive manner how
Reactor &	much time different fluid elements have
injection detection	spent in the reactor

· E(t) dt is the fraction of fluid exiting the reactor that has spent between time t and t + At inside the reactor.

IF No is not known directly, it can be obtained from the outlet conc. measurements by summing up all the amounts. from 0-+00

• Fraction of all the material that has resided for a time t in the reactor between t=0 and $t=\infty$ is 1.

8

Difficulties with pulse technique

· Obtaining a reasonable pulse at the reactor entrance

- Injection time should be very short compared to residence times

in various segments of the

reactor

 $\therefore \int E(t) dt = t$

- There must be negligible dispersion between the point of injection and the entrance to

the reactor.

If these conditions are achieved, pulse technique is a simple and direct way to obtain RTD

Step tracer experiments · Inlet is either C perfect pulse input (Birac deta function) step injection step response · or imperfect pulse , determine E(t) · Cumulative distribution (F(+)) can be determined from step input Cumulative distribution gives the fraction of material F(t) that has been in the reactor at time t or less. Consider constant tracer addition to a feed that is initiated at t=0 $C_{out} = 0$ $\pm xo$ = $Lo, const \pm zo$ in feed The conc. of tracer lis kept at this level until the conc. in effluent is almost same as feed.

9)

(a)
As inlet conc. is constant with
time,
$$C_0$$
, we can take it out of
integral sign
t
 $C_{out}(t) = C_0 \int E(t') dt'$
 $dividing by t_0$
 t
 $\left[\frac{C_{out}(t)}{C_0}\right] = \int E(t') dt' = F(t)$
 $\left[\frac{C_{out}(t)}{C_0}\right] = \int E(t') dt' = F(t)$
 $F(t) = \left[\frac{C_{out}(t)}{C_0}\right] = 0$
 $F(t) = \frac{C_{out}(t)}{C_0} = 0$
 $Ux = differentiate ext{ (b) obtain BTD}$
function
 $E(t) = \frac{dF}{dt} = \frac{d}{dt} \left[\frac{C_{out}(t)}{C_0}\right]_{step}$
 $\cdot Positive step is usually easier to
 $Carry out experimentally than the
pulse test.$$

. Total amount of tracer in the feed over the period of test does not have to be known Drawbacks · sometimes it may be difficult to maintain const. tracer concentra-Hon in the feed. · Obtaining RTD involves differentiation of the data La on occasions differentiation can lead to large errors. · Large amount of tracer is required Other tracer techniques · Negative step (elution) · frequency response method . methods that use inputs other than pulse or step * much more difficult to carry out. and are not encountered often.

 (\mathbf{n})

Characteristics of the RTD E(t) > Exit age distribution function Integral relationships Fraction of effluent $\int E(t)dt = F(t) = \text{ that has been in}$ the reactor for less than t less than t 00 (E(t)dt = (-F(t) = fraction of effluent that has been in the reactor for longer than t · sometimes F curve $F = \int_{a}^{b} E(t) dt$ is used in the same F(t) manner as the RTD in modeling chemical reactors Mean residence the : First moment of RD function $t_m = \frac{\int t E(t)dt}{\int e^{t}E(t)dt} = \int t E(t)dt$

 (\mathbf{b})

In absence of dispersion, and for
constant volumetric flow rate

$$t_m = Z \Rightarrow only for closed systems$$

 $V = Ut_m$
Other moments of RTD
Variance (a^{5}) : square of std. deviation
 $\sigma^{2} = \int_{0}^{\infty} (t - t_{m})^{2} \epsilon(t) dt$
.... magnitude indicates spread of the
distribution. Greater $\sigma^{2} \Rightarrow \text{greater}$
 spread
 $\frac{skewness}{s} (s^{3})$
 $s^{3} = \frac{1}{\sigma^{3/2}} \int_{0}^{\infty} (t - t_{m})^{3} \epsilon(t) dt$
.... magnitude measures extent that
the distribution is skewed in one
direction in reference to mean.
 \Rightarrow It is common to compare moments instead
of comparing entice. distribution

(15)

Normalized RTD function

- Frequently a normalized function is used instead of E(t)

(4)

Let $\theta = \frac{t}{c}$... Number of reactor volumes of $F(\theta) = \tau E(t)$ entrance conditions $f(\theta) = \tau E(t)$ entrance conditions that have flowed $\int_{0}^{\infty} E(\theta) d\theta = 1$ in time t

=> The flow performance inside readors of different sizes can be compared directly.

 ⇒ If normalized function E(0) is used all perfectly mixed CSTRs have numerically the same RTD.
 ⇒ IF the simple function E(t) is used numerical values of E(t) can differ substantially.

 $E(t) = \frac{-t/z}{z}$ $E(t) = \frac{-t/z}{z}$ $E(t) = \frac{-t/z}{z}$ $E(t) = \frac{-t/z}{z}$

Internal age distribution I(x) A function such that I(x) Ax is the fraction of material inside the reactor that has been inside for a period of time between and at ba In catalytic reaction using catalyst whose activity decays with time,

(5)

I (x) is of importance and can be used to model the reactor

 $T(\alpha) = (1 - F(\alpha))$

 $E(\alpha) = -\frac{d}{d\alpha} [CI(\alpha)]$

For CSTR

 $I(\alpha) = -\frac{1}{2}e$

Single CSTR RTD · Conc. in effluent stream is identical to the conc. throughout the reactor. material balance on an inert tracer injected as a pulse at t=0 In - out = Accumulation 0 - 4C = V dC dt at t=0 C=Co- t/z \therefore $C(t) = c_0 e$ -42 -42 $E(t) = \frac{c(t)}{\int_{0}^{\infty} c(t)dt} = \frac{c_{0}e}{\int_{0}^{\infty} e^{-t/z}} = \frac{e}{z}$ $E(t) = \frac{-t/\tau}{\tau}$ $E(\Theta) = e^{-\Theta} \Theta = \frac{t}{c}; E(\Theta) = TE(t)$

(7)

 $F(t) = \int_{0}^{t} E(t)dt = \int_{0}^{t} \frac{t}{z}$ $F(t) = 1 - e^{-t/z}$ $F(\theta) = 1 - e^{-\Theta}$ **Ŧ(0)** E(O) Q 1.0 1-0 0 $t_m = \int t E(t) dt = \int \frac{1}{2} e^{-t/2} dt = C$ $\sigma^{2} = \int \frac{(t-\tau)^{2}}{\tau} e^{-t/\tau} dt = \tau^{2} \int (x-t)^{2} e^{-t/\tau} dx = \tau^{2}$ or = 7 ... Std. deviation is as large as the mean

(

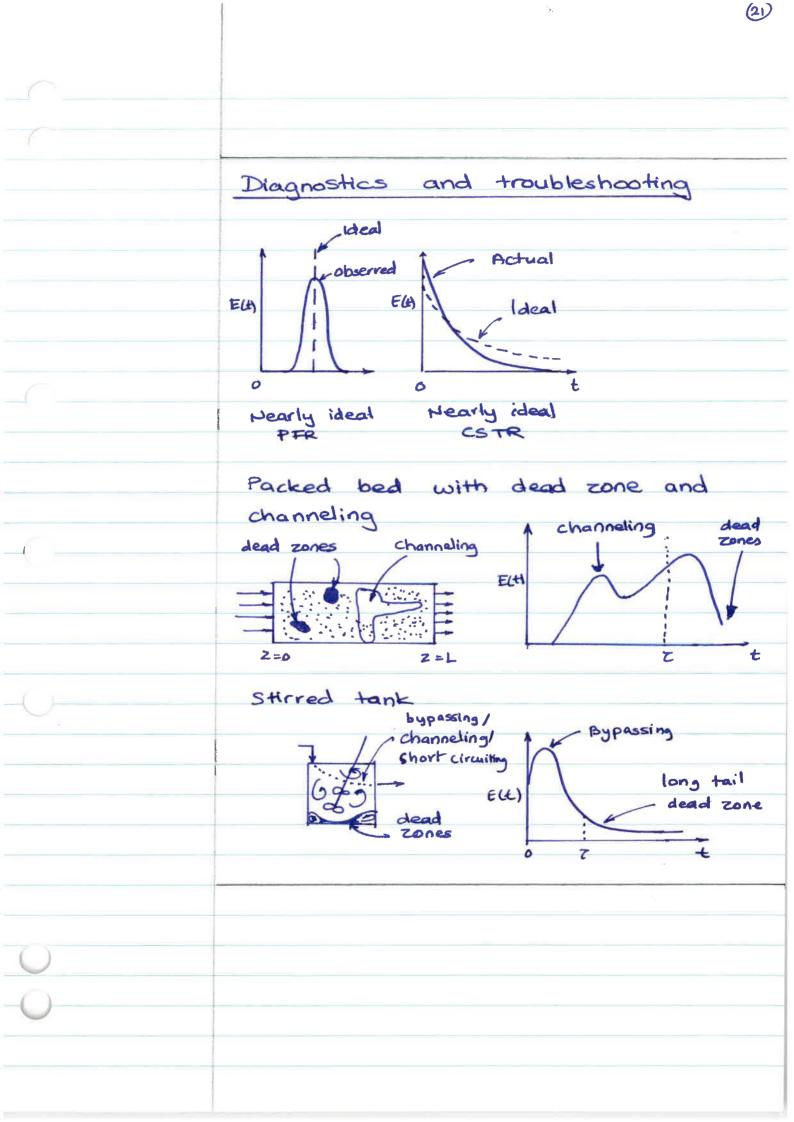
(18)

PFR/CSTR series RTD

 In some stirred tanks there is highly agitated zone in the vicinity of the impeller -> CSTR

(19)

 Depending on the location of inlet and outlet the reacting mixture may follow a tortuous path either before entering / after leaving the perfectly mixed zone -> PFR


Early mixing => Late mixing - the

Early mixing : CSTR output conc.

 $-t/\tau_s$ $\tau_s: corr mean RT$ $e <math>\tau_p: PFR$ mean RT C = 6eThis conc. output will be delayed by Tip at the outlet plug flow section

RTD $\mathbf{E}(t) = \begin{cases} 0 & t < \tau_p \\ \frac{e^{-(t-\tau_p)/\tau_s}}{t} & t < \tau_p \end{cases}$ COSTR F(t) E(+) TPFR TPFR Late mixing $E(t) = \begin{cases} D & t < \tau_p \\ \frac{-(t-\tau_p)/\tau_s}{\tau} & t \ge \tau_p \end{cases}$ > Exactly same as early mixing => Even though RTD will be same for both these cases, conversion can be very different > RTD is not a complete description of the structure for a particular reactor / reactor systems

(20)

